Matlab: Cone/Arrow in 3D

Cone/Arrow in 3D

To plot a cone or arrow in 3D you can use this function:

function arrow3D(startVec, stopVec, varargin)

The startVec is the beginning of the 3D cone and the stopVec the end of the cone. Ypi can use the optional arguments as 'Color','Thickness','Length' to customize your cone.

Source code:
function arrow3D(startVec,stopVec,varargin)
% Input arguments:
% startVec ... input vector of the beginning of the point in [x,y,z]
% stopVec ... input vector of the ending of the point in [x,y,z]
%
% Optional input argument (varargin):
% 'Color',color ... define the color of the arrow/point
% 'Thickness',thick ... thickness of the arrow
% 'Length',length ... Length of the arrow
% 'Axes',ax ... Input axes

    if isempty(varargin)
        varargin{1} = '';
    end
    
    [x] = startVec(1); 
    [y] = startVec(2); 
    [z] = startVec(3); 
    x2 = stopVec(1);
    y2 = stopVec(2);
    z2 = stopVec(3);
    
    [logic, index] = max(strcmp(varargin,'Length'));
    if logic
        length = varargin{index+1};
    else
        length = mean(abs(stopVec-startVec))/10;
    end
    
    [logic, index] = max(strcmp(varargin,'Axes'));
    if logic
        ax = varargin{index+1};
    else
        ax = gca;
    end
    
    [logic, index] = max(strcmp(varargin,'Thickness'));
    if logic
        thick = varargin{index+1};
    else
        thick = mean(abs(stopVec-startVec))/10;
    end
    
    [logic, index] = max(strcmp(varargin,'Color'));
    if logic
        color = varargin{index+1};
    else
        color = [0 0 0];
    end
    
    vector2=[x2;y2;z2];
    vector1=[x;y;z];
    vector21=[x2-x;y2-y;z2-z];

    u1=[x2-x;y2-y;z2-z];
    u1=1/norm(u1)*u1;
    u2=[1;0;0];
    val=u1(1,1);
    abstand=u1-val*u2;
    if abstand==zeros(3,1)
        u2=[0;1;0];
    end
    
    %Kreuzprodukt
    u3(1,1)=u1(2,1)*u2(3,1)-u1(3,1)*u2(2,1);
    u3(2,1)=u1(3,1)*u2(1,1)-u1(1,1)*u2(3,1);
    u3(3,1)=u1(1,1)*u2(2,1)-u1(2,1)*u2(1,1);
    u3=1/norm(u3)*u3;
    %
    u2(1,1)=u1(2,1)*u3(3,1)-u1(3,1)*u3(2,1);
    u2(2,1)=u1(3,1)*u3(1,1)-u1(1,1)*u3(3,1);
    u2(3,1)=u1(1,1)*u3(2,1)-u1(2,1)*u3(1,1);
    u2=1/norm(u2)*u2;
    %orthnormale vektoren
    v1=u2;
    v2=u3;
    step=pi/50;
    a = step:step:2*pi;
    er=vector2;
    Er=repmat(er,1,numel(a));
    zerx=(Er(1,:))';
    zery=(Er(2,:))';
    zerz=(Er(3,:))';

    vectorscale=(1-length)*vector21;
    grund=(v1*sin(a)+v2*cos(a))*norm(vector2'-vector1')/3*thick;
    VS=repmat(vectorscale+vector1,1,numel(a));
    grund=grund+VS;

    xspitz=[zerx';grund(1,:)];
    yspitz=[zery';grund(2,:)];
    zspitz=[zerz';grund(3,:)];

    xrep=reshape(xspitz,1,2*numel(a))';
    yrep=reshape(yspitz,1,2*numel(a))';
    zrep=reshape(zspitz,1,2*numel(a))';

    plot3(ax, xrep, yrep, zrep, 'Color', color);
end



Kommentare

Beliebte Posts aus diesem Blog

Matlab: 3D Coordinate System Rotations with Vectors

Matlab: Points and vectors in 3D-plots